
IPN Progress Report 42-173 • May 15, 2008

Lossless Compression of Seismic Data into
Fixed-Length Packets

Aaron B. Kiely∗

We present an algorithm to losslessly compress a sequence of integers. The intended

application is to encode seismic data at nodes in a network of seismometers. The

algorithm performs predictive compression, using adaptive linear filtering to predict

sample values and encoding variable numbers of samples into fixed-length packets. To

accommodate packet losses, the packets include sufficient overhead data to ensure that

samples in each packet can be decoded without requiring data from preceding packets.

Compression results are presented for seismic test data sets.

I. Introduction

We would like to efficiently losslessly compress the output of a one-dimensional data
source that produces integer-valued samples x1, x2, The data has a dynamic range of b

bits, and without loss of generality, we may assume that each sample value is in the range
[−2b−1, 2b−1 − 1].

Our intended application is compression of seismometer data in a 16-node sensor network
as part of the Optimized Autonomous Space In-situ Sensor-web (OASIS) project.1 The
network is designed to collect real-time volcano status data from Mount St. Helens. Each
node in the network includes a single-component 100 Hz seismometer with dynamic range
of b = 16 bits and is controlled by a wireless iMote2 mote with a microprocessor operating
in low frequency mode (13 MHz) to conserve power. Because of the modest computational
power, our compression approach is designed to have relatively low complexity.

Encoded sample values are to be transmitted using fixed-length packets, and so we would
like to encode as many samples as possible in each packet. A significant additional problem
is that packets are often lost on the channel. For this reason we impose the additional
constraint that decoding of a received packet must not depend on the contents of other

∗Communications Architectures and Research Section

1http://sensorweb.vancouver.wsu.edu/research/oasis.html

The research described in this publication was carried out by the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space Administration.

1

http://sensorweb.vancouver.wsu.edu/research/oasis.html

packets. We assume that time stamp information is already included with each packet so
the decoder can properly synchronize received sample values once they are decoded.

Our compression approach relies on adaptive linear prediction of sample values and
entropy coding of prediction residuals.

II. Prediction

A. Adaptive Linear Prediction

We maintain a running estimate of the mean input signal value µ̂i. This estimate is used
to compute a “de-biased” version of the source samples

di = xi − µ̂i.

We apply Mth order adaptive linear prediction to the de-biased signal di. I.e., the
predicted value d̂i is a linear combination of the preceding M de-biased values,

d̂i =
M∑

j=1

wj · di−j = wT
i ui. (1)

Here wi = [w1, w2, . . . , wM]T is a vector of weight coefficients that are adapted to the
source and ui = [di−1, di−2, . . . , di−M]T is the vector of the preceding M de-biased sample
values. The predicted sample value is

x̂i = µ̂i + d̂i.

The estimation error, or prediction residual, is

ei = xi − x̂i = di − d̂i.

The prediction x̂i is used to losslessly encode xi using a a variable length coding scheme
described in Section IV. The entropy coding procedure takes into consideration the fact
that xi is an integer while x̂i is usually not.

After encoding xi, we use the sign algorithm [1] to update the weight vector:

wi+1 = wi + α · ui · sign(ei)

and we update the mean value estimate via

µ̂i+1 = µ̂i + β · (xi − µ̂i).

Here α and β are parameters that control the adaptation of the weight vector and mean
estimate to the source statistics.

2

It might seem more natural to perform mean estimation as part of the sign algorithm
instead of as a separate step. Under this alternative, one could define extended vectors
w′

i = [w′
0, w

′
1, . . . , w

′
M]T and u′i = [κ, xi−1, xi−2, . . . , xi−M]T where κ is some fixed

constant. Then we could predict the value of sample xi directly as x̂′i = w′T
i u′i. We do not

adopt this alternative approach because prediction of the first sample value in a packet
becomes less straightforward and because compression effectiveness becomes somewhat
more sensitive to parameter selection.

B. Prediction Using Integer Arithmetic

To eliminate floating-point operations in the basic algorithm of Section II-A, we use
rational approximations to real-valued quantities to produce a version of the algorithm
that requires only integer arithmetic. Specifically, the real-valued quantities d̂i, x̂i, µ̂i, ei,
wi are replaced with rational values:

d̂i = D̂i/2R

x̂i = X̂i/2R

µ̂i = Ω̂i/2R

ei = Ei/2R

wi =
1
2R

Wi

Here R is some fixed integer (R = 14 in our experiments), D̂i, X̂i, Ω̂i, Ei are integer
variables, and Wi is a vector of integers. In this version of the algorithm, we perform
round-off operations that result in di being integer-valued, and, consequently, ui being a
vector of integers. The adaptation parameters α and β are chosen to be α = 2−A, β = 2−B

for some integers A and B so that the multiplications needed to perform the updates can
be accomplished via bit-shift operations.

Each iteration of the integer version of the prediction algorithm consists of the following
steps:

1. Compute
D̂i = WT

i ui. (2)

2. Compute
X̂i = D̂i + Ω̂i.

3. Encode the integer sample value xi using the rational predicted value x̂i = X̂i/2R.

4. Compute the (integer) de-biased value di

di = xi −
⌊
(Ω̂i + 2R−1 − 1)/2R

⌋
.

3

5. Compute the prediction error

Ei = di · 2R − D̂i.

6. Update the weight vector

Wi+1 = Wi + sign(Ei)
⌊
(2Rui + (2A−1 − 1)1)/2A

⌋
where 1 denotes a vector of ones, and the floor operation is applied to each
component of the vector.

7. Update the mean value estimate:

Ω̂i+1 = Ω̂i −
⌊
(Ω̂i − xi · 2R + 2B−1 − 1)/2B

⌋
.

III. Encoding into Independent Packets

To ensure that samples in a packet can be decoded without requiring preceding packets to
be available to the decoder, we make the following algorithm modifications that occur at
the start of each packet:

1. We place encoded quantized versions of µ̂i and wi at the beginning of each packet.
The values of µ̂i and wi are set to these quantized versions in both the encoder and
decoder. Quantization is uniform, using Qµ bits of resolution for the value of µ̂i and
Qw bits for each component of wi.

2. We alter the prediction approach for the first M samples in the packet so that it
does not rely on sample values in the preceding packet.

We describe these modifications in further detail below.

A. Quantization

The range of possible values of µ̂i is, at least in principle, equal to the range of possible
sample values xi. This range is uniformly partitioned into 2Qµ bins, and the index of the
quantizer bin containing the value of µ̂i is encoded in the packet using Qµ bits. The
quantizer index could be encoded a little more efficiently using a variable length code since
smaller magnitude values of µ̂i are presumably more likely than larger magnitudes, but we
did not investigate such a scheme.

Each component of wi is clipped as needed to ensure that its magnitude does not exceed
some cap 2C (we use C = 2 in our experiments). Each component is then quantized using
a uniform quantizer with 2Qw bins spanning the range [−2C , 2C]. We make use of a simple
variable length coding scheme to exploit the fact that the components of wi are usually
nonincreasing in magnitude and alternating in sign, i.e.,

4

1. |w1| ≥ |w2| ≥ |w3| ≥ . . .

2. sign(wj) = (−1)j+1

We say that a quantized weight vector is ordinary if it satisfies these conditions.

We use a single bit to indicate whether the quantized weight vector is ordinary. If it is not
ordinary, the weight components are sent uncoded using an additional M ·Qw bits. If the
weight vector is ordinary, we encode |w1| directly using Qw − 1 bits, and for j > 1, we
encode the value of |wj | using dlog2 |wj−1|e bits.

B. Predicting the Initial Samples in a Packet

Since the procedure for decoding a packet cannot depend on the contents of another
packet, for the first M samples in a packet we must modify the prediction approach as we
do not have enough data to perform the calculations of equations (1) or (2) directly.
Instead, we do the following:

1. The first de-biased sample value in a packet is predicted to be zero. I.e., for the first
sample, prediction makes use of the quantized bias estimate but not the weight
vector.

2. For subsequent samples in the packet, when the calculation in equations (1) or (2)
would require the use of samples from the preceding packet, the first de-biased
sample value is repeated enough times to artificially produce M de-biased sample
values to fill the vector ui.

3. Updates of the weight vector wi are not performed for the first M samples in a
packet (the samples for which the modified prediction strategy is in effect).

C. Packet Overhead and Parameter Tradeoffs

Compression-related packet overhead consists of the following:

1. The quantized value of µ̂i (encoded using Qµ bits)

2. The quantized value of wi (encoded using at most M ·Qw + 1 bits)

3. The value of an index indicating which variable length code was used to encode
prediction residuals (encoded using dlog2 be bits); see Section IV.

We summarize the tradeoffs involved in selecting compression parameters:

• Higher order prediction (a larger value of M) allows for more accurate prediction,
but increases the number of components of wi, thus generally increasing the amount
of overhead used to encode wi at the start of each packet.

5

• Higher resolution quantization of µ̂i and wi (i.e., larger values of Qµ and Qw)
increases prediction accuracy but increases packet overhead.

• Larger adaptation step sizes (larger values of α, β) allow for faster initial adaptation
and adaptation to a dynamically changing source, but provide worse steady-state
performance.

IV. Entropy Coding

Source sample values are collected in a buffer. After each source sample arrives, we
determine whether the encoded bit cost of the samples in the buffer exceeds the available
space in the packet. If not, then we proceed to the next sample. Otherwise, we encode the
samples in the buffer (excluding the newest one) using the entropy coding procedure
described in the remainder of this section and reset the buffer to contain only the newest
sample.

Thus, with the arrival of each new sample, we must determine whether the accumulated
samples fit within a packet. Since the coding option used for a packet can change as new
samples arrive, explicitly computing the encoded length of the samples in the buffer is not
always as simple as incrementing an encoded bit count with the cost of the new sample.
The obvious brute-force approach is to simply apply the entropy coding procedure to the
samples in the buffer.

Fortunately, we can often avoid the brute-force calculation by bounding the encoded bit
cost to quickly identify cases where the packet can accommodate the accumulated samples.
For example, the entropy coding procedure guarantees that the average bit cost to encode
n samples is no more than n · b bits. As another example, if we have computed the bit cost
to encode the first n− 1 samples, we can bound the cost to encode n samples based on a
bound on the incremental cost to encode a single sample. We omit further details of our
approach to bounding the encoded bit cost.

Our entropy coding problem then is to efficiently encode a length-n sequence of
integer-valued samples xi given real-valued predictions x̂i. To do this, we map each sample
value to a non-negative integer and then encode the resulting sequence of non-negative
integers using a Golomb code. This general strategy is used in the Rice entropy coding
algorithm [2, 3, 4] and the LOCO-I image compressor [5], among myriad other applications.

A. Mapping

It is sensible to refine the predicted value x̂i to take into account the fact that the true
sample value xi is an integer and is constrained by the instrument dynamic range.
Accordingly, we define

[x̂i] = min{max{round(x̂i), xmin}, xmax},

6

where xmin = −2b−1 and xmax = 2b−1 − 1 are the minimum and maximum possible sample
values. We use this refined prediction to calculate the integer-valued prediction residual

ẽi = xi − [x̂i].

We map the signed integer quantity ẽi to a nonnegative integer fi using a slight variation
on the mapping used in [3, 4]:

fi =

{
2|ẽi| − δi, if |ẽi| ≤ θ

|ẽi|+ θ, otherwise.

Here we define
θ = min{[x̂i]− xmin, xmax − [x̂i]}

and

δi =

{
1, if sign(ẽi) = sign(x̂i − [x̂i])

0, otherwise.

This mapping is invertible and ensures that fi ∈ [0, 2b − 1], i.e., fi is a nonnegative integer
with dynamic range that matches that of the original source. More significantly, the
mapping assigns smaller magnitude residuals ẽi to smaller values of fi. Since smaller
magnitude prediction residuals should occur more frequently than larger magnitudes, we
would like to encode fi using a variable length code that assigns shorter codewords to
smaller integers, such as the codes that we discuss next.

B. Variable Length Coding

For positive integer m, the mth Golomb code [6] defines a reversible prefix-free mapping of
nonnegative integers to variable length binary codewords. We restrict our choices to codes
for which m = 2k for some nonnegative integer k. As noted in [6], coding in this case
becomes especially simple. The codeword for the integer j consists of the unary
representation of

⌊
j/2k

⌋
(that is,

⌊
j/2k

⌋
zeros followed by a one) concatenated with the k

least significant bits of the binary representation of j. Following the convention of [5], we
refer to this special case as a Golomb-power-of-2 (GPO2) code with parameter k.

The samples in a packet are either all sent uncoded, using b bits for each sample, or they
are all encoded using the same GPO2 code with some fixed parameter k. The coding
option selected is explicitly encoded as part of the packet overhead, as described in
Section III-C. For a source with b-bit dynamic range, the cost of using code parameter
k ≥ b− 1 is always at least as large as the cost of sending the samples uncoded [7]. Thus,
in our application, when we use a GPO2 code, it must have parameter k satisfying

0 ≤ k ≤ b− 2.

This gives us b− 1 GPO2 code choices, along with the uncoded option, so our selected
code can be indicated using dlog2 be bits of overhead.

7

The coded samples do not usually perfectly fill a packet; following the last encoded sample
in the packet, any remaining unused bits in the packet (fill bits) are set to zero. Because
each GPO2 codeword begins with a unary-encoded value, these fill bits will never be
mistaken for a coded sample value, and the decoder can correctly determine the number of
samples encoded in the packet.

We now turn our attention to the problem of selecting a coding option that efficiently
encodes some number n of non-negative integers f1, f2, . . . , fn. The traditional solution to
this problem is the Rice algorithm’s brute-force approach: explicitly compute the coding
cost of each option and select the best one [2, 3, 4]. But it was shown in [7] that the
brute-force approach is unnecessarily complex; if we simply compute the sum

F =
n∑

i=1

fi

then the mean value F/n allows us to narrow the possible optimum code choices to at
most three candidates. Furthermore, by simply comparing this mean value to a list of
pre-defined thresholds, we can perform code selection in a way that gives compression
effectiveness that is quite close to that obtained under optimum code selection.2

Our code selection procedure uses the following steps (further details and mathematical
background can be found in [7]):

1. If the mean value F/n is sufficiently large, the fi are sent uncoded. Specifically, we
first check if

F

n
> µ†b

4
=

1
222−b − 1

(µ†16 ≈ 23637). If this condition is satisfied, then the uncoded option is selected.
Otherwise, proceed to the next step.

2. Compute K as follows. If F
n + 49

128 < 1 then K = 0, otherwise K is the unique
nonnegative integer satisfying

2K <
F

n
+

49
128

≤ 2K+1.

This can be implemented in C source code as:

for (K=0; (n<<(K+1)) <= F+(n*49>>7); K++)

;

3. Assign k = min{K, b− 2}.

4. Compute the bit cost of using the GPO2 code with parameter k to encode

2The Rice algorithm also differs from our coding problem in that the Rice coder encodes a fixed number
of samples into a variable number of encoded bits, whereas in our problem we encode a variable number of
samples into fixed-length packets.

8

f1, f2, . . . , fn. If this cost exceeds the uncoded cost (which is n · b bits) then we use
the uncoded option, otherwise we select the GPO2 code with parameter k.

Analysis in [7] shows that the GPO2 code parameter k selected under this strategy is
always within 1 of the optimum parameter value. Our experiments with seismic data
samples suggest that the increased bit rate due to occasional suboptimum code selection is
negligible.

V. Results

We now present some compression results for the proposed algorithm. For comparison, we
also evaluate the performance of two alternative compression approaches:

1. The simple algorithm. The first sample in each packet is included directly in the
output, and the remaining samples in each packet are compressed by applying the
block-adaptive GPO2 coding approach of Section IV using the previous sample value
as the predictor.

2. The continuous algorithm. We perform the adaptive linear prediction of Section II-A
and the sample mapping of Section IV-A to compute the mapped sample values fi

which are encoded using GPO2 codes. The code parameter k is chosen separately for
each fi using the selection approach of Section IV-B applied with the mean mapped
value F/n replaced by a decaying running average of past mapped samples. This
encoding approach yields a more compact representation of the data because no
overhead information (such as the value of k or information about prediction
parameters) is encoded and no quantization of prediction parameters is performed.
However, the decoder cannot recover from the loss of even a single packet. This
approach is intended to illustrate the compression performance that could be
obtained if we did not need to ensure that packets can be decoded independently.

We apply the compressors to five test sets of 12-bit seismic data, each consisting of 30
minutes of 100 Hz data (180100 samples each). The test sets include an earthquake swarm
(“eswarm”), a storm, and low level activity (“background”). For our proposed compressor,
we use algorithm parameters R = 14, B = 8, A = 15 for all results shown here. We also
use 56-byte packets3 and quantizer resolution Qw = 5, Qµ = 11, as our defaults except
where noted otherwise.

Table 1 shows the compressed bit rates achieved on the test data using the simple
algorithm, the continuous algorithm, and our proposed approach with default parameters.
With a good choice of compression parameters, the proposed approach provides a
performance benefit over the simple compressor. We observe also that for a fixed

3Here and in the sequel, the nominal packet size refers to the space available in each packet for compressed
data including the overhead described in Section III-C, but not counting the cost of a timestamp or other
auxiliary data.

9

compression approach, the compressed bit rate that can be achieved on the test data sets
varies by about a factor of two. Clearly one might expect significant fluctuations in
compressed bit rate when using this compression algorithm in a network of seismometers.

Table 1. Compressed bit rates (bits/sample) achieved on five seismic data sets encoded using 56-byte
packets using the simple algorithm, the proposed algorithm with default quantizer resolution, and the

continuous algorithm.

Proposed Algorithm Continuous Algorithm

Data Set
Prediction Order M Prediction Order M

3

6.74

7.24

8.42

10.36

5.27

2

6.91

7.25

8.53

10.47

5.21

2

6.56

6.72

7.80

9.75

4.56

3

6.30

6.61

7.47

9.53

4.51

4

5.97

6.46

7.11

9.22

4.49

5

5.93

6.46

7.04

9.22

4.49

5

7.37

8.41

10.47

5.10

6.67

(a) SEP.EHZ.background

(b) SEP.SHZ.eswarm

(c) YEL.EHZ.background

(d) YEL.SHZ.eswarm

(e) YEL.EHZ.storm

Algorithm
Simple

5.21

7.10

7.77

8.76

10.76

4

5.22

6.59

7.17

8.16

10.34

To provide an indication of the improvement that could be obtained by making a better
choice of quantizer resolution, Table 2 gives the minimum bit rate achieved by the
proposed approach if we selected the best quantizer resolution settings (Qw, Qµ) for each
choice of data set and prediction order. (Note that under the current algorithm it is not
possible to optimize quantizer resolution on individual packets.) The table also shows the
portion of the bit rate that is due to overhead bits and the choice of quantizer resolution
that achieves this minimum rate. Optimizing quantizer resolution tends to yield an
improvement of about 0.1 bits/sample over the default choice on the test data sets.

Table 2. Compression results for the proposed algorithm when quantizer resolution is adjusted to
minimize bit rate achieved for 56-byte packets. The table gives the minimum compressed bit rate

(bits/sample), the rate cost due to overhead (in bits/sample), and the choice of quantizer resolution
(Qw, Qµ) that minimizes bit rate.

Bit Rate Overhead Cost Quantizer Resolution

Set
Data

(a)

(b)

(c)

(d)

(e)

4

6.48

7.96

10.13

5.09

7.17

2

(10,12)

(5,9)

(7,7)

(7,3)

(4,3)

3

(10,11)

(5,9)

(4,11)

(7,3)

(5,3)

4

(10,11)

(4,10)

(5,11)

(5,3)

(4,3)

5

(5,9)

(4,9)

(4,8)

(5,3)

(4,3)

3

5.00

6.69

7.13

8.04

10.15

2

4.95

6.90

7.20

8.26

10.26

5

6.50

7.10

5.08

8.02

10.18

2

0.37

0.32

0.37

0.33

0.28

3

0.45

0.36

0.37

0.42

0.39

4

0.56

0.35

0.53

0.44

0.43

5

0.33

0.35

0.36

0.46

0.46

Prediction Order MPrediction Order MPrediction Order M

Packet size has a significant impact on compression effectiveness. To illustrate this,
Table 3 shows the compressed bit rate achieved and the rate cost due to overhead bits
when we double the packet size from the default of 56 bytes to 112 bytes while using the
choice of quantizer resolution shown in Table 2.

Comparing the performance of the proposed and continuous algorithms in Table 1 shows
that producing packets that can be decoded independently incurs a significant penalty in
compressed bit rate. Comparing Tables 2 and 3 shows that this penalty is particularly

10

Table 3. Compressed bit rate and rate cost due to overhead (in bits/sample) for the proposed algorithm
using 112-byte packets and the values of (Qw, Qµ) shown in Table 2

Bit Rate Overhead Cost

Data Set

(a)

(b)

(c)

(d)

(e)

Prediction Order MPrediction Order M
2

4.74

6.71

7.28

8.03

10.00

3

4.72

6.48

6.90

7.74

9.84

4

4.75

6.27

6.90

7.55

9.71

5

4.89

6.25

6.93

7.63

9.76

2

0.18

0.16

0.19

0.16

0.13

3

0.21

0.17

0.18

0.20

0.19

4

0.26

0.17

0.27

0.22

0.22

5

0.16

0.26

0.23

0.22

0.25

significant when packets are smaller. Sources of this penalty include:

• The cost of overhead bits. Tables 2 and 3 demonstrate that this cost is significant
and that, as expected, doubling packet size while keeping other compression
parameters fixed reduces the overhead rate cost by about half.

• Quantization of wi and µ̂i performed at the start of each packet reduces prediction
accuracy, thus reducing compression effectiveness. The weight vector and mean
estimate continue to adapt during the course of encoding a packet, and so the
penalty for quantization should generally decrease slightly as packet length increases.

• The cost of fill bits. On average we would expect the number of fill bits in a packet
to be about half the average codeword length. So if the compressed bit rate is r

bits/sample, then we would expect about 1
2r fill bits per packet. The average

number of samples encoded in a packet consisting of P bits is about P/r, and thus
the average rate due to fill bits is approximately

1
2r

P/r
=

r2

2P
.

Empirical results confirm that this is a good approximation, generally within about
0.01 bits/sample of the actual rate cost of fill bits. This cost is relatively small,
generally about 0.1 bits/sample or less on the test data sets.

• Prediction is not as effective for the first M samples in a packet (for which we use
less than the full power of the Mth-order predictor), and so these samples are not
encoded as effectively. This accounts for a larger fraction of samples in smaller
packets.

Comparing Tables 2 and 3, we see that doubling packet size while keeping quantizer
resolution fixed generally yields a reduction in bit rate that is about equal to the rate
savings in overhead and fill bits for the test data sets. One exception is data set (c) with
2nd order prediction, bit rate actually increases by 0.08 bits/sample despite a reduced
overhead rate of 0.18 bits/sample. It’s unclear why this is happening, though we note that

11

a 2nd order predictor is not particularly good for this data set. Other exceptions are data
set (b) with 5th order prediction, and data sets (d) and (e) with 4th and 5th order
prediction. In each of these cases there is an additional savings of about 0.15 bits/sample.
In fact, when given the opportunity to double the packet size, we would likely use higher
resolution quantizers and thus see slightly larger improvements than indicated from
Tables 2 and 3.

When the packet loss rate is sufficiently small, increasing packet size to improve
compression effectiveness appears to be a prudent thing to do, up to a point. Our coding
approach is not designed for very long packets; coding is constrained to use the same
entropy coding option for all samples in a packet, and so short packets have the potential
to offer faster adaptivity to changing source behavior. Allowing the entropy coding option
to vary during the encoding of a packet could offer some improvement, but we suspect that
this only occurs for packets much larger than the ones of interest in our application.

We conclude by mentioning two areas for potential improvement. First, perhaps the most
obvious improvement would be to devise a more effective strategy for encoding overhead
information than the one currently employed. Along these lines, would could envision
strategies for joint quantization and encoding of overhead information. For example, we
might alter the quantization of wi depending on the magnitude of the bias estimate or the
value of the GPO2 parameter k.

Second, the algorithm would clearly be more practical if it were modified to independently
adaptively choose quantizer resolution based on observation of the data, rather than
requiring a user to make this selection.

Acknowledgments

The author would like to thank Matthew Klimesh for several insightful discussions, Sharon
Kedar for the invitation to work on this problem and for providing the seismic test data,
and WenZhan Song at Washington State University for helpful feedback.

References

[1] A. Gersho, “Adaptive Filtering with Binary Reinforcement,” IEEE Transactions on
Information Theory, vol. IT-30, pp. 191-199, Mar. 1984.

[2] R. F. Rice, “Some Practical Universal Noiseless Coding Techniques,” Tech. Rep.
JPL-79-22, Jet Propulsion Laboratory, Pasadena, CA, Mar. 1979. http://ntrs.nasa.gov,
Document ID 19790014634

[3] R. F. Rice, “Some Practical Universal Noiseless Coding Techniques, Part III,” JPL
Publication 83-17, Jet Propulsion Laboratory, Pasadena, CA, Mar. 1983.
http://ntrs.nasa.gov, Document ID 19830019798

12

http://ntrs.nasa.gov
http://ntrs.nasa.gov

[4] Consultative Committee for Space Data Systems, CCSDS 121.0-B-1: Lossless Data
Compression, Blue Book, issue 1, May 1997.
http://public.ccsds.org/publications/archive/121x0b1c2.pdf

[5] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I Lossless Image
Compression Algorithm: Principles and Standardization into JPEG-LS,” IEEE
Transactions on Image Processing, vol. 9, no. 8, pp. 1309–1324, August 2000.

[6] S. W. Golomb, “Run-Length Encodings,” IEEE Transactions on Information Theory,
vol. IT-12, no. 3, pp. 399–401, July, 1966.

[7] A. Kiely, “Selecting the Golomb Parameter in Rice Coding,” IPN Progress Report, vol.
42-159, pp. 18, November 15, 2004.
http://ipnpr.jpl.nasa.gov/progress report/42-159/159E.pdf

13

http://public.ccsds.org/publications/archive/121x0b1c2.pdf
http://ipnpr.jpl.nasa.gov/progress_report/42-159/159E.pdf

